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Abstract. A variational approximation applicable to three-dimensional isotropic cubic 
lattice models is formulated. When applied to the simple cubic, face centred cubic and 
body centred cubic Ising models, the approximation correctly gives the first 14, 19, and 
23 terms respectively of the known low-temperature free energy expansion. 

1. Introduction 

The thermodynamics of many two-dimensional lattice models have been numerically 
approximated using a variational approximation involving comer transfer matrices 
(Baxter 1968, 1978, Kelland 1976, Baxter and Tsang 1980). Furthermore the same 
technique has been applied to obtain series expansions longer than those previously 
obtained by graphical methods (Baxter and Enting 1979, Baxter et al 1980). 

It has been previously noted (Baxter 1982) that the variational equations can be 
extended to three dimensions. Unfortunately, in general, the resulting equations will 
involve ‘corner tensors’ with three indices. There being no analogue of matrix diagonali- 
sation for these tensors, the situation is far more complicated than in two dimensions. 

However, there is an exception to the general case, which will be investigated in 
this paper. In two dimensions the lowest-order variational approximation reduces the 
comer transfer matrices to scalars, and thus matrix diagonalisation is irrelevant. (For 
the Ising model, the approximation becomes that of Kramers and Wannier (1941).) 
A similar situation will be shown to occur in three dimensions. The equations defining 
the lowest-order variational approximation of the type given by Baxter (1978) only 
involve scalar quantities, and are thus amenable to both numerical and series solution 
on the computer. 

2. Restrict.ions on the models 

Consider a three-dimensional simple cubic lattice of N columns, M rows and P planes. 
To each site i of the lattice, associate a spin ci with values +1 or -1 ( + or - )  and 
impose periodic boundary conditions. To each cube of the lattice associate a Boltzmann 
weight W(alefglbcdlh), the spins a, b,. . . , h arranged as in figure 1. 
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4 b 

Figure 1. Arrangement of the spins a, .  . . , h on the comer sites of a cube. 

We require W to have the reflection symmetries that it be unchanged by interchang- 

(2 . la )  

ing the order of the rows, columns and planes so that 

W ( a1 efgl bcd I h ) = W (gl cba lfehl d ) 

= W(fldab1ghelc) 

= W (  el adcl hgfl b ) .  

(2.1 b )  

(2.lc) 

Furthermore we will restrict our attention to isotropic models, so that W is unchanged 
by rotation through 90°, and thus 

W (  a I efg I bcd I h ) = W (  e I dac( ghfl b )  

= W ( g 1 a bc I hefl d ) . 
(2.2a) 

(2.2b) 

As a final restriction we require the ground state to have the reflection and rotation 
symmetries given above, and in addition, to be translation invariant. 

The partition function is 

z=c n w ( a i l a , U , U ~ l I ~ k a , ( U , )  (2 .3)  

where the product is over all cubes of the lattice, and the sum over all values of the 
spins. Let u={u, ,  U,, . . . , u N M }  denote the spins in one plane and U'= 

{U; ,  U;, . . . , uhM} the spins on the plane above. The contribution to the partition 
function between these two planes is 

v w , ~ ,  = n w ( o l l U , ~ j ' o l l a ~ a k U j l a r )  (2.4) 

where the product is over all cubes formed between the two planes. Let V denote the 
2 N M  x 2 N M  plane-to-plane transfer matrix with elements Vw,w,. Then as usual (Baxter 
1982) we have 

Z = T r  V p - A p  (2.5) 
where A is the maximal eigenvalue of V.  In statistical mechanics we want to calculate 
the partition function per site 

(2.6) = z I / N M P = A I / N M  

The plane reversal symmetry (2.1 c )  implies that V is symmetric, so A can be determined 
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from the variational principle 

= *TV*/*T* (2.7) 

where + is the 2NM-dimensional vector which maximises the RHS of (2.7), and $T is 
its transpose. 

3. The variational approximation 

As a variational approximation to A, we can choose for + any trial vector, which will 
at least reproduce the ground state of the system at zero temperature. By the assumption 
of the ground state being translation invariant, a choice of t,b which has this feature 
(this choice is analogous to the lowest-order trial vector given by Baxter (1978)) is 

$(Cl, U29 9 U N M )  =n  F(ui, uj, ffk, U/) (3.1) 
where the product is over all faces i, j, k, 1 (with the sites ordered as in figure 2) of a 
single plane. Then 

’ 1  T J  
Figure 2. Arrangement of the sites i, j ,  k and 1. 

But this is a two-dimensional partition function with face weight F2( ui, uj, uk, U/). 
Choosing F to be invariant under row and column reversal and rotation through 90°, 
from Baxter (1978) we can write down the variational approximation 

(3.3) 2 NM 
(LT* = ( s 1 s d s 2 )  

The quantities sl, s2 and s3 are defined by the equations 

s3 = 1 F2(a,  b, a’, b’ )y (a ,  a ‘ ) y ( a ,  b ) y ( b ’ ,  a ’ ) y ( b ,  b ’ ) x ( a ) x ( a ’ ) x ( b ) x ( b ’ ) ,  (3.4) 
a, a’,  b, b’ 

(3.6) 

where each independent argument of x and y can take the spin values + or -. The 
function y satisfies the symmetry requirement y ( a ,  b )  = y ( b ,  a ) ,  and both x and y are 
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chosen so that (3.3) is stationary with respect to variations in these functions. Thus 

(3.7) 

F2(a ,  b, U ’ ,  b’ )y (a ,  b)y(b’ ,  a ’ ) y ( b ,  b ’ ) x ( b ) ~ ( b ’ ) = ( s , / s , ) x ( a ) x ( a ’ ) y ( a ,  0 ’ ) .  (3.8) 
b, b’ 

Next we have 

(LTV(L =c  n G(pi ,  pj, pk, CL/) (3.9) 

where p i  = (ai, ai) and 

G(pi,  Pj, pk, P / )  = W(aiIaia;‘a;IaiakajIa/)F(ai, r j ,  ak, a / ) F ( a i ,  ai, U;,  ai)* (3.10) 

The sum in (3.9) is over all allowed spin pair values and the product is over all faces 
i , j , k, I of a single plane. This is again a two-dimensional partition function, but instead 
of the spin variable taking on only the values + and -, the allowed values are now 
the spin pair values (+,  +), (+,  -), ( - ,  +)  and ( - ,  -). Analogous to (3.3) we have 
the variational approximation 

(3.1 1 )  

The rj are formally the same as the s, if we replace F, x, y by G, 2,jj respectively, and 
allow each independent argument of the latter functions to assume the spin pair values 
given above. Let the analogues of (3.4)-(3.8) thus specified be labelled (3.4)’-(3.8)’ 
respectively. 

We can now give a variational approximation to K as defined by (2.6). Substituting 
(3.3) and (3.11) in (2.7) we have 

2 NM 4’w = ( r , r 3 / r * )  . 

= ( r 1 r 3 / r ; ) / ( s l s 3 / s ; ) .  (3.12) 

It remains to maximise (3.12) with respect to F. This gives 

1 W(a~laI(+5a;1a:a3a21a4)F(a~, ai, ai)y(pl, p3)8(p l ,  p2) 
5 1  9 0 4  

x 7 ( p 4 ,  P3)y(p2 ,  p4)n(pl)n(p2)n(p3)2(p4)  

= ( r 3 / s 3 ) F ( a l ,  U27 U39 u44),y(al, U3)y(a l ,  a 2 ) y ( a 4 ,  a3)y(a2, a4)  

x ( a I ) x ( a Z ) x ( a 3 ) x ( ~ ~ 4 ) .  (3.13) 

The five equations (3.7), (3.8), (3.7)’, (3.8)’ and (3.13) define a variational approxi- 
mation for K .  These equations reduce to three if 2, j j  are given by 

Z2(pt )  = X ( U l ) X ( 4 ) Y ( G  a:>, (3.14) 

1*(P,,  P,) = y ( r , ,  a , ) y ( d ,  a:)F2((+,,  U,, 4,a;). (3.15) 

Then r I  = s2, r2 = s3, equation (3.7)’ reduces to (3.8), and (3.8)’ reduces to (3.13). Since 
the equations will now involve square roots of the functions x and y ,  we define 

~ ( a )  = A2(a), 

y ( a ,  a‘) = P ( U ,  a’). 

(3.16) 

(3.17) 
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3.1. Final expression for K and the variational equations 

If we denote r3 = s4, we now have as a three-dimensional variational approximation 

K = (s4s:)/(s:sl) (3.18) 

where, after substituting (3.14)-(3.17) in (3.4)-(3.6) and (3.4)’, 

(3.19) 

s3 = c F2(a ,  b, a‘,  b‘)B*(a, a’)B2(a,  b)B2(b’ ,  a’)B2(b, b’) 
a, a’,  b, b’ 

xA2(a)A2(a‘ )A2(  b)A2( b’) ,  (3.20) 

s 2 =  A4(a)A4(b)B4(a ,  b ) ,  
a, b 

sI = 1 A*( a ) .  
a 

(3.21) 

(3.22) 

In (3.19) the arguments of F, B, A and W have been omitted. The products f, e and 
c are over the 8 faces, 12 edges and 8 corners of the cube respectively. The sum is 
over all 256 allowed spin configurations on the cube. 

The variational equations determining K are, after substituting (3.14)-(3.17) in 
(3.13), (3.8) and (3.7) 

1 F2(a ,  b, a‘,  b’)B2(a,  b)B2(b’ ,  a’)B2(b,  b ’ )A(b )A(b ’ )  = ( s 3 / s 2 ) B 2 ( a ,  a ’ )A’(a)A2(a‘ ) ,  
b, b’ 

(3.24) 

B4(a, b)A4(b )  = ( s 2 / s , ) A 4 ( a ) .  
b 

(3.25) 

In (3.23) the products e and c have the same meaning as in (3.19); the product f is 
over all faces of the cube except the top face, and the sum is over all spin configurations 
of the bottom face only; on the RHS all the spins are in the top face. 

3.2. Interpretation of A, B and F 

It is clear from (3.19) that the variational quantities A, B and F can be interpreted as 
face, edge and corner weights respectively. Indeed, if we had considered the three- 
dimensional analogue of the hierarchy of two-dimensional variational approximations 
given by Baxter (1978), A, B and F would represent ‘corner tensors’ for the blocks of 
spins indicated in figure 3. 

In particular A is the three-dimensional analogue of the usual corner transfer 
matrix. This allows us to write down an expression for the zero-field magnetisation 
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Figure 3. Typical blocks of spin corresponding to the ‘comer tensors’ A, B and E 

MO. Consider the three-dimensional cubic lattice divided into eight pieces by three 
cuts. At the site of the intersection of the three cuts denote the spin U. In the variational 
approximation the Boltzmann weight for each cube is A(u). Thus 

M o = ( a ) = ( A 8 (  +) -A8(  -))/(A*( +) +A8( -)). (3.26) 

A direct derivation of (3.26) can also be given. If we impose a magnetic field H 
on the system the Boltzmann weight becomes 

8 

( k=l ) W =  Woexp h uk (3.27) 

where WO denotes the zero-field Boltzmann weight, and h the non-dimensional magnetic 
field. Define the new variables A, B and F by 

A( U) = eCh“A( U), (3.28) 

B(u, U’) = e x p [ h ( a + a ’ ) ] ~ ( ~ ,  ut), (3.29) 

Rul,  u2, v3, u4)=exp[-h(al  + a 2 + ~ 3 + ~ 4 4 ) I F ( u 1 ,  u2, u3, g4). (3.30) 

Then the expressions for s4, s3 and s2 are formally the same as (3.20), (3.21) and (3.22) 
if we replace W, A, B, F by WO, A, B and respectively. The expression for sI becomes 

sI = 1 A8((a) ehv. 
a 

(3.31) 

Thus differentiating the expression for K ,  (3.18), logarithmically with respect to 
h(remembering K is by definition stationary with respect to A, B and P), then setting 
h = 0, (3.26) follows immediately. 

4. Solving the equations 

Inspection of the variational equations (3.23)-(3.25) shows that 

A(+), B(+, +), F ( + ,  +, +, +) and W(+l+++l+++l+) (4.1) 

can be taken as normalisations, which we choose to equal unity. There remain 11 
equations in 1 1  unknowns. The equations can be solved both numerically and in series 
form. 
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4.1. Series solution 

We seek series solutions in powers of a low-temperature parameter U ,  say, chosen so 
that the Boltzmann weights W can be written as integer powers of this parameter. 
This is done by first writing down and solving the equations in the low-temperature 
limit, which allows the leading term of the series expansion of each to be determined. 

In each of the 11  equations there is one term only on the LHS which is of the same 
order in the low-temperature limit as the single term on the RHS, all other terms on 
the left being of a lower order. (For the models considered here, the dominant term 
is the one in which the spins in the summation on the LHS are all +l . )  For each 
equation, we can define the ratio of the RHS to this dominant term as a new variable, 
and express the original variables as products of powers of these new ones. In the 
low-temperature limit we can clearly solve the 11  equations for the new variables (each 
will be one). We can then evaluate (to leading order) the sub-dominant correction 
terms on the LHS of each equation and re-solve for each of the new variables. Iterating 
this procedure, we can sequentially expand all variables in powers of the low- 
temperature variable 

U = e-4K, (4.2) 

where K = J / k B T ,  J denoting the coupling constant. We can then use (3.18) and (3.26) 
to obtain the series expansions for K and MO. 

4.2. Numerical solution 

The key to obtaining numerical solutions is to use an accurate initial guess at the 
solution. For low temperatures the variables are initialised with their leading-order 
low-temperature expansion term, obtained as described in 9 4.1. Explicitly 

(%/SI 1 = (4  s 2 )  = (s4/s3) = 1, 

A ( - ) = B ( + ,  - ) = F ( + ,  +, +, - ) =  W(+l+++l-++l+) ,  

B ( - ,  -) = F ( + ,  +, -, -) = W(+l++-l-++l+) ,  

F ( - ,  +, -, +)= W(-l+++l--++l+) ,  

F ( - ,  -, -, -) = W(-l+--I-++l+) ,  

F ( - ,  +, -, - )=  W(-l++- l -++l+) ,  

where the weight functions w are defined in terms of W by 

(4.3) 

w =  w/ W(+l+++l+++l+). (4.4) 
The equations are solved using a Newton-Raphson procedure. The initialisation 

(4.3) is adequate for sufficiently low temperatures. At higher temperatures, a quadratic 
extrapolation procedure is used, whereby the solution of the equations for the previous 
three temperatures is used to construct an initial guess at the solution for the next 
temperature. 

4.3. Determining the critical temperature 

By choosing the quantities (4.1) to equal unity, and the initialisations (4.3), the 
zero-temperature solution of the variational equations thus obtained has MO= 1. Thus 
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the ground state of the system with all spins + has been singled out. Assuming the 
model has spin reversal symmetry, the critical temperature can therefore be determined 
by plotting the zero-field magnetisation curve (see figure 4). Note that for u<uc, but 
still close to uc, there will be three solutions of the variational equations for both A( +) 
and A(-),  and thus three values of MO. For each solution with A(+)#A(- )  there 
will be a solution with the values of A( +) and A( -) interchanged, by spin reversal 
symmetry. There will also be the symmetric solution A( +) = A( -) which will persist 
below the critical point, since the equations are only an approximation of real critical 
behaviour. 

Figure 4. A typical zero-field magnetisation curve obtained from the variational approxima- 
tion. The critical value of the temperature variable is determined as the intersection of the 
curve with the axis. 

5. Results for the Ising models 

In this section the variational approximation will be applied to the simple cubic (sc), 
face centred cubic (FCC) and body centred cubic (BCC) Ising models. The accuracy 
of the approximation can then be determined by comparison with the results of Sykes 
et a1 (1965, 1972, 1973) who used graphical methods. 

The models are specified by their Boltzmann weight W. For the sc Ising model 

W (  a I efg I bcd I h ) = expaK [a ( g  +f +e) + b ( g  +f+h ) + c(g +e + h ) +d ( h +f+ e )] (5.1) 

and for the FCC Ising model 

W (  a1 efgl bcdlh) =exp$K[a( d +b+c) +b( d +c)+cd +e(f+g+h)+g(f+h) +fh]. (5.2) 

Note that in the FCC model the spins on the sites a, b, c and d are independent of the 
spins on the sites e , f ;  g and h. The partition function on N sites formed by the weight 
(5.2) can be factored into two non-interacting FCC models on N / 2  sites. This implies 
that the variational edge weight B(a,  b )  can be written as a product of single spin 
functions 

N u ,  b ) = 4 , ( a ) 4 , ( b )  (5.3) 

F(a, b, C, d)=4Aa ,  d)$,(b, c ) .  (5.4) 

and the face weight in the form 
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In principle the relations (5.3) and (5.4) simplify the solution of the variational 
equations, however in practice we found it more convenient to use F and B as originally 
formulated. 

There are two ways of formulating the BCC Ising model on a cubic lattice. The 
first is to use the unit cell with weight function 

W (  alefgl bcd Ih) =exp K (  ah +be+cf+dg) ,  (5.5) 

which generates four independent BCC lattices. This will be referred to as DBC. In 
this weight function no spins on an edge or faces of the unit cell interact, and so the 
variational edge and face weights can be written 

B( a, b 1 = PI ( a  )P I ( b  1, 
F ( a ,  b, c, d )  = P2(a )CL2(b)CL2(C)P2(d 1. 

K = ( 1 +U8)[( 1 - V I 4 ) /  ( 1 - U  I6)l4. 

(5.6) 

(5.7) 

(5.8) 

The variational equations can now be solved exactly. We find 

This is exactly the formula for K obtained from the Bethe approximation with coordina- 
tion number 8 (Domb 1960). 

The second method is to begin with a unit ,cell of the BCC Ising model of 2 N  sites 
(see figure 5), and then sum over the interior spin. This gives a cubic lattice model 
on N sites with weight function 

W(alefglbcdlh)=2 cosh K ( a + b + c + d + e + f + g + h ) .  (5.9) 

Figure 5. A typical cell of the BCC lattice. In forming the partition function, the spin k is 
summed over. 

This model, to be referred to as BCC, will be more accurate than the DBC, as the unit 
cell is larger. 

Using the method outlined in 5 4.3 the critical temperature for the four models (sc, 
FCC, BCC and DBC) was determined. Following SykedetaZ(1972) the quantity calculated 
was 

(5.10) 

The results, and a comparison with those obtained by Sykes et a1 (1972), are given in 
table 1. 

Series expansions for log K and MO were calculated using the procedure given in 
0 4.1. The results, and a comparison with those obtained by Sykes et a1 (1965, 1973), 
are given in table 2. In fact the 23 terms of the BCC Ising model correctly given by 

vf= tanh J /  kB T,. 
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Table 1. u t  denotes the value of (5.10) given by the variational approximation, U( the value 
given by Sykes et a1 (1972). 

Model urr Of I( U,-$)/ U,( XlOO% 
~~ ~ 

sc 0.215 0.218 13 1.4% 
FCC 0.099 0.101 74 2.7% 
BCC 0.154 0.156 12 1.4% 
DBC 0.142 0.156 12 9% 

Table 2. The column headed ‘accuracy’ gives the number of terms in the series expansion 
of both log K and MO correctly given by the variational approximation. The ‘next two terms’ 
column gives both the coefficients of the next two terms as given by the variational 
approximation and, in brackets, the actual coefficients. 

Model Accuracy Next two terms of log K Next two terms of MO 

sc 14 69 39@(69 3 9 3 ) ) ~ ”  -846 574(-846 6 2 8 ) ~ ”  
-213 75@(-213 754t)ul6 2753 136(2753 5 2 0 ) ~ ’ ~  

FCC 19 120( 123) U’’ 
138( 1 2 6 ) ~ ~ ’  

-960( -984) U” 
- I 104( - 1008) U’’ 

BCC 23 3832 715f(3832 9 6 1 ; ) ~ ~ ~  -54008 274(-54012 8 8 2 ) ~ ~ ~  
-7940 092(-7941 7 9 6 ) ~ ”  112 609 696( 112 640 8 9 6 ) ~ ~ ’  

DBC I 1  3@(48f) U 
252(204)uI3 

-2 18( -3 14) U” 
-2016(- 1 6 3 2 ) ~ ”  

the variational approximation represent the entire series for this model given by Sykes 
et a1 (1965) (higher terms in the expansion are given in Sykes er a1 (1973)). Notice 
that in all cases (the DBC excluded) the deviation from the correct value of the erroneous 
coefficients is small. 

6. Conclusion 

A variational approximation applicable to three-dimensional isotropic lattice models 
has been formulated. It can be regarded as an extension of the two-dimensional 
Kramers-Wannier approximation, and involves just 11  equations for 11 unknowns, so 
can be easily handled on a computer (our run times were never more than a few 
seconds). The approximation gives moderately accurate results when tested on the sc, 
FCC and BCC king models: for the last it correctly gives the first 23 terms of the 
low-temperature series, and numerically predicts a value of the critical temperature 
that is in error by only 1.4%. 
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